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Abstract. We consider Ising models with long-range ferromagnetic pair interactions decaying
as 1/rθ for 1.0 < θ 6 1.5. We first find approximate values for the critical temperature.
We use a cluster mean-field approach combined with finite-size scaling and Vanden Broeck
and Schwartz transformations. Forθ = 1.10 we findTc = 21.000 97 which can be compared
with recent results of Luijten and Blöte who foundTc = 21.000 99± 0.000 26, and which is
two orders of magnitude more accurate than any previous results. Since we use a mean-field
cluster approximation as part of our approach, the accuracy for larger values ofθ decreases
significantly. In addition toTc we obtain approximate values for the critical exponentsβ, γ and
δ using the coherent anomaly method. Forθ = 1.10 we obtainβ = 0.4995,γ = 1.0008, and
δ = 2.9947—all extremely close to the predictions of renormalization group calculations which
say that these exponents should take on their classical values for this value ofθ .

1. Introduction

In 1969 Dyson [1] proved the existence of a phase transition for a one-dimensional Ising
model with long-range ferromagnetic pair interactions decaying as 1/rθ with 1< θ < 2. Not
long after, specifically 1970, Nagle and Bonner [2] made the first numerical approximations
of the critical temperature,Tc, and critical exponents for these models. Since then a stream
of rigorous results and numerical estimates of the critical temperatures and critical exponents
have appeared. An excellent review of these results has recently appeared in a paper by
Luijten and Bl̈ote [3]. In addition to the review of past results these two authors have
performed extensive Monte Carlo simulations of these systems resulting in estimates of
both the critical temperature and critical exponents. These results are limited to the case
where 1< θ 6 1.50. They point out that their critical temperature estimates are two orders
of magnitude more accurate than previous estimates. This large increase in the accuracy of
Tc estimates has caused the present author to re-examine and extend some previous work by
himself, Lucente and Hourlland [4]. This work involved the use of the coherent anomaly
method (CAM) of Suzuki [5] and cluster mean-field estimates to obtain approximate values
for the critical temperature and the critical exponentsβ andγ . Here we retain the cluster
mean-field approach but combine it with a finite-size scaling approach in combination with
methods to accelerate the convergence of finite-lattice sequences, rather than the CAM, to
increase the accuracy of our critical temperature estimates by several orders of magnitude.
We restrict ourselves to the case, as done by Luijten and Blöte, where 1< θ 6 1.50. For
very slowly varying interactions, e.g.θ = 1.10, we obtain accuracy at least equal to that
of Luijten and Bl̈ote. After estimatingTc we go back to the CAM to obtain estimates for
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the critical exponentsβ, γ andδ. With this approach we also increase the accuracy of our
critical exponent estimates. This increased accuracy is substantial when the interaction falls
off very slowly but rather minor when this is not the case.

In the following section we present the necessary notation as well as the approach
used to generate the ‘data’ used to obtain our final critical temperature and critical exponent
estimates. This is followed by section 3 with our critical temperature results and by section 4
with our results for the critical exponentsβ, γ andδ.

2. Notation and mean-field estimates

We consider a one-dimensional lattice of sites with Hamiltonian

H({σ }) = −
∑
i<j

J

|i − j |θ σiσj − h
∑
i

σi (1)

whereσi is the spin variable on theith site,σ = ±1, {σ } denotes a configuration of the
system, and|i− j | is the distance between sitesi andj with the distance between adjacent
sites set equal to one. Hereafter,J , the interaction strength, will be set equal to one.J
positive means we have a ferromagnetic system. The thermal average of a spin is defined
as

〈σi〉 = Z−1
∑
{σi }

σi exp[−βH({σi})] (2)

whereZ is the partition function, the sum is over all configurations, andβ = 1/kT .
Hereafter we setk, the Boltzmann constant, equal to one.

Our methods of section 3 require a sequence of critical temperature estimates for the
above system (of course for the determination of the critical temperature we takeh = 0)
and we achieve this by use of the cluster mean-field approach. Here we treat exactly all
interactions among the spins making up a cluster and we replace all interactions between a
spin in the cluster and one outside the cluster with a mean-field interaction. As an example
we have for a three-site cluster

H(σ1, σ2, σ3) = −J [σ1σ2+ σ2σ3] − J

2θ
σ1σ3

−Jm(σ1+ σ3)

[ ∞∑
n=1

1

nθ
+
∞∑
n=3

1

nθ

]
− Jmσ2

[
2
∞∑
n=2

1

nθ

]
(3)

wherem represents the mean field. We then require that the thermal average of the spin in
the middle of our cluster equalm, i.e. for the above case〈σ2〉 = m. For temperatures greater
than the mean-field critical temperature the only solution occurring ism = 0. However,
as the temperature is lowered there occur solutions withm 6= 0. The temperature below
which non-zero solutions exist is the mean-field critical temperature for that cluster size.
We denote this critical temperature asTc(L), theL representing the number of sites. We
look at clusters with odd numbers of sites from 1 to 25. In table 1 we list the values
of Tc(L) for clusters of 1 to 25 sites forθ = 1.1 and θ = 1.5. One notices thatTc(L)
decreases monotonically with cluster size. It is also worth mentioning that theseTc(L)

values are rigorous upper bounds on the critical temperature of the infinite system [6, 7].
We giveTc(L) values to 16 figures past the decimal because, as we shall see in section 3,
one needsTc(L) values to 16 or more figures if one does not want to limit the obtainable
accuracy found by the methods to be presented.
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Table 1. Tc(L) values for clusters of 1, 3, . . . ,23 and 25 sites forθ = 1.10 and 1.50.

L θ = 1.1 θ = 1.5

1 21.168 896 929 901 6197 5.224 750 697 370 9767
3 21.078 195 053 616 4672 4.893 079 043 100 1155
5 21.051 934 167 793 0418 4.769 602 703 082 4686
7 21.039 390 542 274 3332 4.701 743 199 107 3253
9 21.031 994 058 422 2680 4.657 709 855 152 5970

11 21.027 092 374 695 5513 4.626 343 454 814 8782
13 21.023 593 263 559 3630 4.602 619 275 207 2211
15 21.020 963 291 404 3735 4.583 908 214 597 7935
17 21.018 910 351 341 6567 4.568 687 747 585 7609
19 21.017 260 744 701 0522 4.556 008 948 358 6706
21 21.015 904 540 759 9219 4.545 246 449 189 2952
23 21.014 768 683 725 5628 4.535 969 626 602 2390
25 21.013 802 675 396 8671 4.527 871 257 058 7719

For the estimation of critical exponents we use the CAM of Suzuki [5]. Since our
results are mean-field results we know if we look at the spontaneous magnetization,ms , we
have

ms(L) = m̄s(L)|ε|1/2 ε ≡ T − Tc(L)
Tc(L)

(4)

whereε is to the power1
2 which is the classical value for the critical exponentβ. In a

similar fashion for the zero-field susceptibility,χ(L), one has

χ(L) = χ̄(L)1

ε
(5)

and for the magnetization at the critical temperature as a function of the magnetic fieldh,
mc(L), one has

mc(L) = m̄c(L)h1/3. (6)

Suzuki’s CAM method makes use of̄ms(L), χ̄(L) and m̄c(L) to determine the true, and
thus not necessarily classical, critical exponent values ofβ, γ andδ. The values are given
by

β = 1

2
− log(m̄s(L1)/m̄s(L2))

log(ρ)
(7)

γ = 1+ log(χ̄(L1)/χ̄(L2))

log(ρ)
(8)

γ (δ − 3)

3(δ − 1)
= log(m̄c(L1)/m̄c(L2))

log(ρ)
(9)

whereL1 andL2 denote two different cluster sizes and where

ρ = Tc(L2)− Tc
Tc(L1)− Tc (10)

with Tc the true critical temperature for the system being investigated. KnowingTc(L)

and eitherm̄s(L), χ̄(L), or m̄c(L) for three different cluster sizes thenTc and one of the
critical exponent values can be determined. This we did in our earlier paper [4]. We now
use a finite-size approach to first get an approximation for the true critical temperature and
then we use equations (7)–(9) to obtain values forβ, γ and δ. This greatly increases the
accuracy of our results.
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Table 2. Tc estimates using equation (11) and the three clusters listed in the left column.

Cluster
sequence used θ = 1.1 θ = 1.5

1,3 & 5 sites 20.974 656 76 3.943 302 24
3,5 & 7 sites 20.995 717 12 4.260 157 14
5,7 & 9 sites 20.998 771 59 4.312 017 66
7,9 & 11 sites 20.999 756 18 4.331 703 07

9,11 & 13 sites 21.000 190 84 4.341 622 28
11,13 & 15 sites 21.000 420 25 4.347 434 75
13,15 & 17 sites 21.000 556 31 4.351 180 55
15,17 & 19 sites 21.000 643 93 4.353 758 49
17,19 & 21 sites 21.000 703 92 4.355 620 33
19,21 & 23 sites 21.000 746 96 4.357 015 55
21,23 & 25 sites 21.000 779 04 4.358 092 05

3. Critical temperature estimates

As the notationTc(L) indicates, the mean-field critical temperature is dependent on the size
of the cluster. Using a finite size scaling [8] approach the convergence of the mean-field
critical temperatures to the true critical temperature can be written as

Tc(L)− Tc
Tc

≈ b

Lλ
(11)

whereλ is the shift exponent. Hence knowingTc(L) for three different cluster sizes allows
one to compute an approximation toTc. We have in table 2 results forθ = 1.1 andθ = 1.5
using three cluster sequences of 1, 3 and 5 sites to 21, 23 and 25 sites. We list our estimates
of Tc(L) to eight places past the decimal only to better illustrate the systematic increase in
the Tc values and not to imply that this is the accuracy of the results.

Regarding accuracy, we note that Luijten’s and Blöte’s critical temperature value for
θ = 1.1 is Tc = 21.000 99± 0.000 26 and forθ = 1.5 they haveTc = 4.3638± 0.0001.
Thus we see that for the very slowly decaying case ofθ = 1.1 our approximation is already
within Luijten’s and Bl̈ote’s error bounds but forθ = 1.5 our value is significantly below
their error bounds. In [4] where the cluster mean-field results along with the CAM were
used for a cluster sequence consisting of 13, 15 and 17 sites (the largest examined in that
reference) we found that forθ = 1.1 theTc estimate was 20.959 when using equation (7)
and 20.908 when using equation (8), while forθ = 1.5 theTc estimates wereTc = 4.363
andTc = 4.283 using equations (7) and (8), respectively. Forθ = 1.1 the present results are
clearly better while forθ = 1.5 the 4.363 found using equation (7) coincides closely with
the Luijten and Bl̈ote result, while the approach using equation (8) is quite far off. We thus
suspect that the accuracy obtained using equation (7) for theθ = 1.5 case is misleading.

What is particularly evident from table 1 is the monotonic decrease in the value ofTc
with the increase in the cluster sizes used. We repeat that these are known to be upper
bounds onTc [6, 7] and improve as the size of the mean-field cluster increases. What is
particularly evident in table 2 is the monotonic increase in theTc values and we conjecture
that the results are lower bound forTc. In table 5 we present results using the 21, 23 and 25
site-cluster sequence for variousθ values in the interval 1.1 < θ 6 1.5. One sees that for
all θ theTc values given by equation (11) and the data from the 21, 23 and 25 site clusters
is below that given by Luijten and Blöte and asθ increases the difference between the two
values increases.
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One can further improve the above results if one uses the sequence transformation
methods introduced into statistical mechanics by Hamer and Barber [9]. These are
techniques used to accelerate the convergence of sequences of the type given by theTc(L)’s.
The sequence transformations are originally due to Vanden Broeck and Schwartz [10]. Using
the notation of Hamer and Barber [9] one has for the general sequence transformation that
given a sequence of valuesAL which converge to a limiting valueA∞ one forms a table
of approximants toA∞ denoted by [L,N ] where [L, 0] = AL and the(N + 1)th column
of approximants is generated from theN th and(N − 1)th columns via the formula

1

[L,N + 1]− [L,N ]
+ αN

[L,N − 1]− [L,N ]

= 1

[L+ 1, N ] − [L,N ]
+ 1

[L− 1, N ] − [L,N ]
(12)

with [L,−1] ≡ ∞. Again following Hamer and Barber we refer to these approximants as
VBS approximants.

The above defines a broad class of transformations based on the definition ofαN . For
the case where the sequence converges as

AL ≈ A∞ + b1L
−λ1 + b2L

−λ2 + · · · . (13)

Barber and Hamer [11] show that a good choice for the value ofαN is

αN = − [1− (−1)N ]

2
(14)

for N = 0, 1, 2, . . .. The table of approximants using this approach are given in tables 3
and 4 forθ = 1.1 andθ = 1.5, respectively. The more terms in the original sequence of
Tc(L) available, the more accuracy is needed for these terms. For our sequence consisting
of 13 terms (see table 1) we need theTc(L) values determined to a minimum of 16-figure
accuracy. A single change in the 16th figure of one of the terms of the sequence influences
our final estimate ofTc in the seventh figure which is what we believe to be close to our
accuracy for theθ = 1.1 case. For higherθ values we have less accuracy. The entries in
tables 3 and 4 are based on 18-figure accuracy for allTc(L)’s.

Using the VBS transformations forθ = 1.1 we obtain as our estimates forTc =
21.000 97 which is almost identical to the Luijten and Blöte result of 21.000 99± 0.000 26.
As is not surprising, since we are using a mean-field approach to get our initial input, for

Table 3. Table of VBS approximants ofTc for θ = 1.10 usingαN defined in equation (14).
All calculations were done to 18-figure accuracy though only the first 12 digits are given in the
table. For the full 18 figures for the left-hand column see table 1.

21.168 896 9299
21.078 195 0536 21.041 232 3750
21.051 934 1678 21.027 920 1365 20.999 984 6914
21.039 390 5423 21.021 365 2518 21.000 594 2846 21.000 847 0657
21.031 994 0584 21.017 461 7421 21.000 772 9699 21.000 900 1543 21.000 956 4674
21.027 092 3747 21.014 863 7484 21.000 847 2695 21.000 922 6479 21.000 958 7574 21.000 962 5818
21.023 593 2636 21.013 005 1240 21.000 884 6870 21.000 934 3552 21.000 960 1898 21.000 963 5117 21.000 965 7619
21.020 963 2914 21.011 606 4891 21.000 906 0276 21.000 941 2873 21.000 961 1906 21.000 964 0609
21.018 910 3513 21.010 513 9642 21.000 919 3220 21.000 945 7743 21.000 961 9327
21.017 260 7447 21.009 635 7193 21.000 928 1696 21.000 948 8746
21.015 904 5408 21.008 913 5019 21.000 934 3684
21.014 768 6837 21.008 308 5382
21.013 802 6754
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Table 4. Table of VBS approximants ofTc for θ = 1.40 usingαN defined in equation (14).
All calculations were done to 18-figure accuracy though only the first 12 digits are given in the
table. For the full 18 figures for the left-hand column see table 1.

5.224 750 697 37
4.893 079 043 10 4.696 371 436 57
4.769 602 703 08 4.618 946 107 30 4.363 375 411 91
4.701 743 199 11 4.576 331 430 00 4.364 247 903 90 4.364 681 691 25
4.657 709 855 15 4.548 672 700 14 4.364 537 639 78 4.364 759 586 09 4.364 766 598 72
4.626 343 454 81 4.528 970 957 80 4.364 663 315 07 4.364 765 838 31 4.364 762 231 60 4.364 767 025 68
4.602 619 275 21 4.514 070 696 43 4.364 719 777 48 4.364 756 541 51 4.364 713 195 93 4.364 732 273 25 4.364 750 076 01
4.583 908 214 60 4.502 320 062 66 4.364 742 043 54 4.364 746 873 50 4.364 744 421 59 4.364 744 802 32
4.568 687 747 59 4.492 762 307 40 4.364 746 012 54 4.364 743 586 60 4.364 744 797 74
4.556 008 948 36 4.484 801 119 71 4.364 739 772 62 4.364 752 742 23
4.545 246 449 19 4.478 043 535 33 4.364 727 746 89
4.535 969 626 60 4.472 218 985 11
4.527 871 257 06

Table 5. The Tc estimates based on equation (11) and using clusters of 21, 23 and 25 sites,
based on the VBS transformations, and the results of [3].

Using equation (11) and a Using the alternating
θ three cluster sequence alpha VBS transformation Results from Luijten and Blöte [3]

1.01 201.139 389 201.139 389
1.04 51.093 79 51.093 85
1.07 29.618 9 29.619 12
1.10 21.007 21.000 97 21.000 99± 0.000 26
1.20 10.841 1 10.842 0 10.842 29± 0.000 2
1.30 7.344 9 7.347 2 7.347 0± 0.000 1
1.40 5.516 5.520 2 5.520 3± 0.000 1
1.50 4.358 4.364 7 4.363 8± 0.000 1

increasingθ our estimates become less accurate. Forθ = 1.5 we obtain as our estimate
Tc = 4.365 while Luijten and Bl̈ote obtain 4.3638± 0.0001. Results forθ = 1.1, 1.2, 1.3,
1.4 and 1.5 are given in table 5 along with the results of Luijten and Blöte for these five
cases.

As Hamer and Barber point out, the apparent convergence of the VBS tables can
sometimes be misleading, especially with respect to the accuracy of the estimates. In
their original work they were able to ‘M-shift’ their sequences which allowed them to
obtain some idea of the accuracy of their results. Unfortunately we have been unable to
implement this scheme for ourTc estimates.

Based on the fact that our method becomes increasingly accurate asθ → 1, it is natural
that we should consider the conjecture of Cannas [12] that one has

lim(θ → 1)
1

Tc
≈ θ − 1

2
. (15)

We have looked at the followingθ values, 1.07, 1.04 and 1.01, and the results for these
θ values are presented in table 5. For these results we have computedTc(L) only for
cluster sizes up to and including 17 sites and not the 25 sites done for the otherθ values.
Nevertheless we see that the estimate forθ = 1.01 is accurate to approximately eight
figures even for this abbreviated sequence of clusters. We also see that our results support
the conjecture of Cannas.
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4. Critical exponents

In this section we obtain estimates of the critical exponentsβ, γ andδ, using equations (7)–
(9) along with the VBS transformations. We find that these methods require us to know
m̄s(L), χ̄(L), and m̄c(L) to approximately 12-figure accuracy. This is particularly true
for small θ values where our results for the critical exponents have three- and four-figure
accuracy. Since we obtain these quantities by calculating the spontaneous magnetization, the
zero-field susceptibility, and the magnetization as a function ofh at the critical temperature
and then using equations (4)–(6), respectively, we need to know the critical temperature,
Tc(L), to extreme accuracy. For all the following results we usedTc(L) values accurate
to 30 figures. This level of accuracy would not be needed if we did not employ the
VBS transformations but these transformations significantly improve our estimates of the
critical exponents as they did with the critical temperature estimates of the previous section.
Because we need this level of accuracy we have, for the critical exponents, used clusters
whose maximum size is 15 sites. Nevertheless we will see that, especially for smallθ , we
obtain accurate estimates of the critical exponents.

The general procedure is to use equations (4)–(6) to getm̄s(L), χ̄(L), and m̄c(L) for
clusters whose number of sites are 1, 3, 5, . . . ,15. Then, using pairs of clusters consisting of
1 and 3 site clusters, 3 and 5 site clusters, up to a pair consisting of 13 and 15 site clusters and
the coherent anomaly equations (7)–(9), we obtain a sequence of seven estimates for each
critical exponent. These estimates are all listed in table 6. ForTc needed in equations (7)–
(9) we use theTc found in the previous section. Then using these sequences of seven
estimates we use the VBS transformation withαN = 0 for all N and do not use the
alternating value ofαN used in the previous section to obtain our final best estimate of the
critical exponent values.

As with our estimates ofTc, the smaller isθ , the more accurate our estimates. For
θ = 1.10 we findβ ≡ 0.4995,γ ∼= 1.0008, andδ ∼= 2.9947. This is to be compared with
the results of [4], in which forθ = 1.10 it was reported thatβ ∼= 0.495 andγ ∼= 1.014,
and no estimate forδ was given. Using the values ofyt = 0.507 andyh = 0.7493 of [3]
one obtainsβ ∼= 0.4945, γ ∼= 0.9843, andδ ∼= 2.9888. Our values are seen to be more
accurate for this value ofθ . However, asθ increases we quickly lose accuracy and for
θ = 1.50 we haveβ ∼= 0.408, γ ∼= 1.13, andδ ∼= 2.488. The results of [3] for thisθ
value areyt = 0.501 andyh = 0.7492 givingβ ∼= 0.5006,γ ∼= 0.9948, andδ ∼= 2.987. It
should be pointed out that the results of [3] include error bars onyt andyh and these error
bars, in general, do increase asθ increases but not to the extent that inaccuracies increase
in the method of this paper. Final results for the three critical exponents considered here
are given in table 7. In the case ofδ, equation (9), the coherent anomaly equation we have
used to estimateδ, also involves the exponentγ . We have used our estimates forγ found
using equation (8) in equation (9) to determineδ and we did not assumeγ = 1 and then
calculateδ. Hence our method is completely self-contained and we make no assumptions
about one critical exponent in order to calculate another.

A couple of cautionary remarks are warranted. First, forθ = 1.10 one can see from
table 6 that for all three critical exponents the sequence of seven values given by the
coherent anomaly method are monotonically increasing in the cases involvingβ andδ, and
decreasing in the case ofγ . In all cases moving toward the classical values predicted by
renormalization group methods. However, whenθ increases this is not always the case. For
example, forθ = 1.40 and theβ exponent, the value given by the estimate using clusters
of 3 and 5 sites is farther from the classical value of1

2 than that obtained using 1 and 3
site clusters. After this, as one looks at larger cluster pairs, the estimates all increase and
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Table 6. Critical exponent approximations using CAM andTc values from the previous table.
A contains the results forβ, B contains the results forγ , and C contains the results forδ.

A

Number of sites
in cluster pairs↓ θ = 1.10 θ = 1.20 θ = 1.30 θ = 1.40 θ = 1.50

1 & 3 0.495 146 0.482 301 0.463 650 0.444 277 0.416 340
3 & 5 0.496 682 0.485 381 0.466 319 0.435 487 0.412 600
5 & 7 0.497 365 0.487 078 0.468 094 0.441 771 0.410 653
7 & 9 0.497 774 0.488 247 0.469 504 0.442 428 0.409 628
9 & 11 0.498 053 0.489 127 0.470 675 0.443 135 0.409 082

11 & 13 0.498 259 0.489 824 0.471 673 0.444 503 0.408 805
13 & 15 0.498 417 0.490 397 0.472 538 0.445 137 0.408 692

B

Number of sites
in cluster pairs↓ θ = 1.10 θ = 1.20 θ = 1.30 θ = 1.40 θ = 1.50

1 & 3 1.010 837 1.043 277 1.096 077 1.166 711 1.251 761
3 & 5 1.006 594 1.030 779 1.076 326 1.143 820 1.231 399
5 & 7 1.004 939 1.025 149 1.066 475 1.131 464 1.219 607
7 & 9 1.004 019 1.021 741 1.060 121 1.123 070 1.211 175
9 & 11 1.003 423 1.019 391 1.055 537 1.116 788 1.204 632

11 & 13 1.003 001 1.017 645 1.052 010 1.111 816 1.199 311
13 & 15 1.002 683 1.016 282 1.049 176 1.107 732 1.194 845

C

Number of sites
in cluster pairs↓ θ = 1.10 θ = 1.20 θ = 1.30 θ = 1.40 θ = 1.50

1 & 3 2.959 770 2.854 937 2.716 884 2.578 184 2.466 150
3 & 5 2.973 903 2.887 393 2.753 788 2.605 870 2.473 693
5 & 7 2.979 793 2.903 511 2.774 157 2.622 175 2.481 271
7 & 9 2.983 214 2.913 917 2.788 377 2.634 280 2.487 745
9 & 11 2.985 485 2.921 429 2.799 265 2.643 998 2.492 773

11 & 13 2.987 127 2.927 210 2.808 418 2.652 129 2.497 460
13 & 15 2.988 380 2.931 851 2.815 360 2.659 118 2.501 649

Table 7. Critical exponent values found using VBS transformations withαN = 0.

θ = 1.10 θ = 1.20 θ = 1.30 θ = 1.40 θ = 1.50

β 0.499 507 0.496 10 0.464 58 0.439 94 0.408 43
γ 1.000 8 1.006 0 1.023 1.064 1.137
δ 2.994 7 2.973 4 2.907 2.896 2.535

move toward the classic value. In the case ofθ = 1.50, for our entire seven-term sequence,
the values ofβ decrease, moving away from the classic value. Their decrease is slower
as the cluster sizes increase, so we believe that they may eventually begin to increase as in
the θ = 1.40 case. The second remark is that the very systematic properties shown for our
VBS transformations ofTc as shown in tables 3 and 4 are continued in the calculations for
the critical exponents only for the caseθ = 1.10 and become less systematic asθ increases.
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5. Conclusion

In the above we have shown that when the decay rate for ferromagnetic interactions in a
long-range one-dimensional Ising model is small, one can obtain very accurate estimates
for the critical temperature using finite-size scaling and VBS transformations. Similarly,
one can obtain very accurate estimates of the critical exponents using the coherent anomaly
method and VBS transformations. In particular, forθ = 1.10, the accuracy of the results
equals or surpasses the most accurate results known to date: those of Luijten and Blöte
given in [3]. As θ increases, the accuracy decreases significantly.

As with any approximation, its value is dependent to some extent on the work required
by the approximation method. All of the above computations were performed on a personal
computer using Mathematica and they required about one month of computer time to produce
the above results. Obviously much larger clusters could be considered resulting in improved
accuracy if larger computer resources were to be used.
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